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Interactions between genetic variants—epistasis—is pervasive in
model systems and can profoundly impact evolutionary adaption, pop-
ulation disease dynamics, genetic mapping, and precision medicine
efforts. In this work, we develop a model for structured polygenic
epistasis, called coordinated epistasis (CE), and prove that several re-
cent theories of genetic architecture fall under the formal umbrella of
CE. Unlike standard epistasis models that assume epistasis and main
effects are independent, CE captures systematic correlations between
epistasis and main effects that result from pathway-level epistasis, on
balance skewing the penetrance of genetic effects. To test for the
existence of CE, we propose the even-odd (EO) test and prove it is
calibrated in a range of realistic biological models. Applying the EO
test in the UK Biobank, we find evidence of CE in 18 of 26 traits
spanning disease, anthropometric, and blood categories. Finally, we
extend the EO test to tissue-specific enrichment and identify several
plausible tissue–trait pairs. Overall, CE is a dimension of genetic archi-
tecture that can capture structured, systemic forms of epistasis in com-
plex human traits.

genetics | epistasis | polygenic risk

Interaction between the phenotypic effects of genetic variants, or
epistasis, is an essential component of biology with important

consequences across multiple scientific domains. For example,
epistasis significantly impacts evolutionary models, including re-
sponse to selection or changing environment (1, 2). Epistasis also
fundamentally shapes genetic architecture, as the direction of an
allele’s effect can change based on genetic background (3–6).
Epistatic interactions are pervasive in model systems, including in
model organisms (2, 7–11) and in recent mammalian gene-level
interaction screens (12–15). Moreover, these interactions often
represent core biological functions. For example, the molecular
chaperone HSP90 modifies diverse disease-model–specific pro-
teins (16–18), and conceptually similar mechanisms protect the
cell from aberrant translation at ribosomes (19). Such highly
structured forms of epistasis are a core focus of systems biology,
and their genetic bases have long been hypothesized to influence
complex human disease.
While the observations in model organisms suggest that epistasis is

also fundamental in humans (11, 20), it remains poorly understood.
This is largely because powerful, interpretable modeling tools are
nascent. Genome-wide searches for interacting single-nucleotide
polymorphism (SNP) pairs are computationally and statistically
onerous, despite some success (21). Additionally, recent and classical
methods for epistasis increase power by aggregating interactions
across the whole genome (3, 22–28), and their results further support
the potential importance of epistasis in complex traits. Interestingly,
all of these approaches assume that interaction effect sizes and di-
rections are independent of main effects or, in other words, that
epistasis is uncoordinated.
This is in contrast with recent conceptual models of complex

human traits that imply or are consistent with coordinated forms

of epistasis. For example, Zuk et al. describe a limiting pathway
model of human disease that directly implies negative interactions
between SNPs contributing to different pathways (29). Also, the
HSP90 community has discussed the possibility of a polygenic
version of chaperon function (30), which would induce coordi-
nated interactions between HSP90 buffer SNPs and exonic mis-
sense SNPs. Another example is the omnigenic model, which
suggests that traits are determined by a few trait-specific “core”
genes that are modified by many nonspecific “peripheral” genes
(31, 32), implying coordinated epistasis (CE) between the SNPs
contributing to “core” and “peripheral” genes. Monogenic disor-
ders with polygenic modifiers are another instance of structured
epistasis, where the expressivity and penetrance of mutations in a
core gene are modified by many variants distributed among the
genome (33–35).
Motivated by these concerns, we formally propose a concrete

parameter to capture a specific form of structured epistasis, which
we call CE and define formally below. Conceptually, CE measures
concerted interactions between pathways that are themselves ad-
ditively heritable traits. For example, one pathway might capture
additive genetic effects on a polygenic buffering pathway, similar
to HSP90, and another pathway might capture genetic effects on
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individual proteins that contribute to disease. In another example,
type 2 diabetes (T2D) involves interactions between insulin-sensing
and -producing systems, which likely have distinct genetic archi-
tectures and operate through different tissues (36–38). We quantify
CE with the parameter γ, where γ < 0 indicates negative epistasis
between genetic pathways, on average, dampening the marginal
effects of trait-increasing variants; conversely, γ > 0 indicates posi-
tive epistasis, where trait-increasing SNP effects are actually mag-
nified in the full organismal context relative to their genome-wide
association study (GWAS) estimates. Importantly, CE is a test for
general statistical epistasis and does not generally indicate the
present of biological interactions as in a protein complex (35).
For simplicity, we usually imagine CE in the context of positive

SNP effects, where positive/negative epistasis coincide with the
more interpretable notions of synergy/antagonism. For example,
for a disease trait, positive epistasis and synergy both imply that
the joint effect of risk alleles exceeds the sum of their marginal
effects. In general, however, CE measures the skew in genetic
risks, and γ > 0 may either dampen or exacerbate marginal genetic
effects (39). In Fig. 1, we illustrate γ in the case of two latent
interacting risk pathways. The key is that γ ≠ 0 if there are heri-
table, positively (synergistically) or negatively (antagonistically)
interacting pathways (Fig. 1B), while γ = 0 if the interactions are
purely random or if the interactions are absent (Fig. 1A).
Testing for the existence of CE would be straightforward if we

knew or could accurately estimate the SNP effects on causal, la-
tent pathways: we could simply build genetic predictors of each
pathway and test their interaction. However, these pathways are
generally unknown and high dimensional, making CE estimation
seem impossible. Surprisingly, we prove that testing for CE can be
accomplished by randomly assigning independent sets of SNPs to
arbitrary proxy pathways. Concretely, we build polygenic risk
scores (PRS) specifically for the even and odd chromosomes and
then test their interaction in a linear regression on phenotype
(Fig. 1C). We call this the even–odd (EO) test, and we prove
analytically that EO reliably estimates CE under polygenicity. We
also prove that under a polygenic model, any chromosome split,
not just EO, gives identical results in expectation. Importantly,
however, partitions aligned closely with the true latent pathways
will have greater power. We leverage this fact to test for CE en-
richment in specific genomic annotations. Specifically, we focus on
tissue-specific annotations to ask whether complex traits are
enriched for interactions between tissue-specific pathways.
In this paper, we first introduce the concept of CE formally and

define the EO test. We then examine simulated data sets to show
that EO is robust to confounding under plausible models of
assortative mating and population structure. Then, we perform the
EO test in the UK Biobank (UKBB) across 26 traits spanning
multiple domains and find 18 with significant CE. We validate the
approach, which uses internally cross-validated PRS, by using PRS

constructed from external data sources for 17 of the 26 traits.
Finally, we estimate tissue-specific CE across 13 tissues in the
UKBB and find several biologically plausible tissue–trait pairs,
including several that replicate, as well as enrichment for inter-
acting tissue pairs. We conclude with a discussion of limitations to
our approach, implications for association testing and genetic ar-
chitecture, and possible future extensions.

Results
Coordinated Polygenic Epistasis. Throughout the paper, we assume
a polygenic pairwise epistasis model:

yi = ∑M
j=1

Gijβj +∑
j≤j’

GijGij’ Ωjj’ + ei, [1]

where yi is the phenotype for individual i, and Gij is the genotype
for individual i at marker j, and « is the residual error and assumed
to be independent and identically distributed (i.i.d.) Gaussian. The
vector β contains the marginal polygenic effects. Ωjj’ is the pairwise
interaction effect of SNPs j not equal to j’, so Ω is the matrix of all
pairwise SNP epistasis effects in the genome.
The standard additive model assumes no epistasis, that is,

Ω = 0. In this model, SNP j always has the same effect βj on the
phenotype, regardless of genetic background or environment. In
the polygenic setting, where there are many more SNPs than in-
dividuals (M > N), total heritability can still be reliably estimated
by the random-effect model Genome-based restricted maximum
likelihood (GREML), which models βj as i.i.d. Gaussian (40).
Epistatic models go further by allowing nonzero Ω. To date,

epistatic tests have focused either on candidate SNPs or genome-
wide screens for SNP pairs, which reduce M < N and facilitate
simple fixed-effect models (21). More recently, random-effect
models akin to GREML have become popular for estimating
the total size of Ω (i.e., the heritability from pairwise epistasis)
(25–28). Another recent approach tests for interaction between a
single SNP and a genome-wide kinship matrix, a useful com-
promise that provides SNP-level resolution and also aggregates
genome-wide signal (22).
While these methods are useful for characterizing the existence

and impact of epistasis, all are limited by the assumption that β and
Ω are independent. We are interested in an orthogonal question:
when are β andΩ deeply intertwined by latent interacting pathways?
Conceptually, β andΩ encode all relevant information, so the goal is
to decode the presence of interacting pathways from these param-
eters. Concretely, we prove that these pathways exist if, and only if,
the CE γ is nonzero, where γ is defined as:
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Fig. 1. CE and the EO test with two chromosomes. (A) In the additive model, SNP effects from the two phenotype-increasing pathways are summed to
produce the phenotype (γ = 0). (B) Same as A, except the pathways interact either positively (synergistically, 3,   γ > 0) or negatively (antagonistically, 4,   γ < 0).
(C) The EO test considers interaction from traits derived from the even and odd chromosomes in place of the unknown pathways truly driving the interaction.
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γ = Covj<j’ βjβ
’
j,Ωjj’( ). [2]

Intuitively, γ<0 negatively skews the total polygenic effect rela-
tive to additivity. This is equivalent to dampening the positive
marginal phenotypic effects in aggregate, that is, antagonism be-
tween positive main effects. Conversely, γ>0 positively skews the
population, increasing the probability of extremely high pheno-
types. Note that γ = 0 does not imply that epistasis is absent;
rather, it implies epistasis effects do not necessarily systemati-
cally align with main effects, as has been implicitly assumed by
prior polygenic models of epistasis (25–28).
As a stylistic example, imagine there are two genetically inde-

pendent pathways that are each sufficient for T2D, one based on
body mass index (BMI) and one based on pancreas function. Then
γ<0 is expected, because high-BMI cases are not likely to also
have high pancreas risk, which is rare. On the other hand, if a
disease requires high risk across distinct systems, then γ>0 is
expected. As another stylistic example, if asthma requires both
immune components and tobacco exposures, then the impact of a
smoking-risk SNP on asthma is greater in the presence of immune
risk factors.
We provide a more rigorous exploration of coordination in SI

Appendix. In particular, we prove that several biologically plausible
epistasis models induce CE, including a trans genetic regulation
model (32) (SI Appendix, section 4.1), a polygenic generalization of
molecular buffers (16) (SI Appendix, section 4.2), and gene–
environment interaction with heritable environment (41) (SI Ap-
pendix, section 4.3 and Fig. S1). We also show that within-pathway
coordination contributes to CE and can cause γ≠ 0 (SI Appendix,
Example 3 and Fig. S2). We also study CE as a function of the
number of latent pathways; in particular, γ = 0 results in the math-
ematically natural many-pathway limit, hence CE typically indicates
the existence of a parsimonious set of interacting pathways (SI Ap-
pendix, Example 4).

The EO Estimator for CE.We have defined our target, the CE γ, as a
function of the true genetic effects β and Ω. However, these pa-
rameters are not known; even worse, they are high dimensional
and cannot be accurately estimated. Nonetheless, we develop a
simple and powerful method to test for nonzero γ.
The key idea in the EO test is that randomly defined pathways

can act as proxies for true pathways. These random pathways will
have a significant interaction if, and only if, there truly are latent
pathways that interact. Intuitively, this randomized approach has
power to detect true signals because many interacting SNP pairs
are appropriately assigned under the random partition—the
probability of incorrectly assigning all interacting pairs is negli-
gible. Furthermore, the EO test is calibrated because incorrectly
assigned SNP pairs do not interact and hence do not cause bias. In
other words, correctly assigned SNP pairs will exist and will suffice
to drive interactions between the even and odd proxy pathways.
Although the incorrectly assigned SNPs will cause power loss and
downward bias for |γ|, this bias can be corrected post hoc if we
assume an infinitesimal epistatic model (SI Appendix, Proposition
1). In this case, exactly half of all interacting SNP pairs will be
captured by the random SNP partition, which allows us to per-
fectly estimate the aggregate contribution of SNPs whose pairwise
interactions are not captured by the EO partition. Mathematically,
these facts are related to other randomized approaches for high-
dimensional estimation, including GREML, randomized linear
algebra, and compressed sensing (42–46).
We propose estimating γ by regressing on the interaction be-

tween PRS built specifically from even-indexed and odd-indexed
chromosomes (PRSe and PRSo, respectively):

y∼ αoPRSo + αePRSe + γeoPRSo*PRSe. [3]

The ordinary least squares estimate γ̂eo is the EO estimator of
the coordination γ. We prove that γeo = 0 if, and only if, γ = 0
assuming the model in Eq. 1 and that there are many causal SNPs
(SI Appendix, section 3). Therefore, we can simply use a regression
test for γ̂eo to test for the existence of CE. Furthermore, we prove
that the EO estimate is unbiased and consistent when causal SNPs
are in linkage equilibrium (SI Appendix, Proposition 1). Full de-
tails, assumptions, and guarantees of the EO test are provided in
SI Appendix.
Our choice of even and odd chromosomes is clearly arbitrary.

Crucially, we prove that any partition of chromosomes into two
groups without linkage disequilibrium (LD) gives identical results
under a perfectly infinitesimal model (SI Appendix, section 3.2).
Therefore, for concreteness, simplicity, and to emphasize the ar-
bitrariness and flexibility of the EO test, we have chosen to define
it by the case where one PRS is built specifically from SNPs on
even chromosomes and the other is built specifically from SNPs on
odd chromosomes.
With finite genomes, however, results may depend heavily on

the precise choice of chromosomes used to build PRSo and PRSe.
Nonetheless, it is important that SNPs are independent across
splits to avoid false positives from nonlinear single-variant ef-
fects, that is, dominant or recessive variants. Hence, we always
evaluate chromosome-level genome partitions. This is analogous
to our choice to exclude the Ωjj terms from CE; in both cases, CE
implies nonlinear effects of each individual SNP and the aggre-
gate PRS, but the converse is not true. In practice, we use a more
flexible form for the EO test, where we jointly fit and test the
interactions between all (22 choose 2) chromosome-specific
PRS, which simultaneously obviates LD concerns and the arbi-
trariness of assigning chromosomes based on their canonical
indices. Nonetheless, our method does not assume the true
causal pathways are located in contiguous or independent ge-
nomic regions; rather, this is a condition on our chosen partition
of the genome that is used in the EO test. In particular, both CE
and EO remain valid when causal SNPs for each pathway are
distributed across the genome randomly, and/or when SNPs
contribute to multiple pathways (SI Appendix, section 3.3).

EO Test Can Distinguish CE from Population Structure and Uncoordinated
Epistasis.To examine the properties of the EO test, we simulate data
under three biologically plausible genetic architectures: additivity,
isotropic (i.e., uncoordinated) epistasis, and CE. For each archi-
tecture, we also test the impact of population structure, assortative
mating, and adjustment with principal components (seeMaterials and
Methods). In each case, we perform a GWAS and then build ordinary
PRS as well as PRS based only on variants from odd chromosomes
and even chromosomes (PRSo and PRSe, respectively). We then
test PRS in a second dataset.
We first tested the correlation between PRSo and PRSe, called

θeo, which is related to an existing method of assortative mating
(47). We found that the test for θeo ≠ 0 reliably indicated the
presence of assortative mating or uncorrected population struc-
ture. Note that after adjusting for PCs, the test for θeo ≠ 0 was
roughly null in the presence of population structure (Table 1).
However, our main focus is on the EO test for γeo ≠ 0. We

found that the EO test was calibrated under both the additive
and isotropic interaction models, as expected, with false-positive
rates near 0.05 at a nominal P < 0.05 threshold. In particular, this
is a clear demonstration of a setting where significant pairwise
epistasis exists and yet CE does not exist, thereby drawing a clear
distinction between CE and the more general concept of epis-
tasis. Further, the EO test has power of roughly 95% under the
CE model (Table 1).
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We did not observe substantial false positives in the EO test
under assortative mating. However, we did observe high false-
positive rates for the EO test under uncorrected population struc-
ture (0.95), although after correcting for PCs, the test is calibrated
with an empirical false-positive rate near 0.05 (Table 1). In practice,
we recommend adjusting for population-structure proxies when
running the EO test, as is standard in human genetics.
We then sought to more comprehensively profile the behavior

of the EO test across a range of simulation parameters. First, we
varied the sample size, n (SI Appendix, Fig. S3A). As expected,
power at nominal P < 0.05 grew with sample size, from roughly
5% at n = 1,000, up to roughly 95% at n = 10,000 (our baseline),
and reaching nearly 100% at n = 20,000. Next, we varied the
additive heritability, which affects the EO test power because it
governs the accuracy of the PRS estimates (SI Appendix, Fig.
S3B). As expected, power increased with heritability, growing
from 35% at h2 = 0.1 to nearly 100% at h2 = 0.7 (our baseline is
h2 = 0.5). Finally, we varied the strength of CE parameter, γ. As
expected, power grew with |γ|, reaching 100% when we doubled
the parameter relative to our baseline (SI Appendix, Fig. S3C).
Furthermore, when γ = 0, we recovered calibrated tests with
roughly 5% false-positive rate. Interestingly, our simulations had
similar power regardless the sign of γ, as expected because the
sign of the phenotype is arbitrary in these simulations.
An essential feature of the EO test is that it is unbiased even

when the even/odd partition of SNPs is chosen randomly with
respect to partition of SNPs into the causal interacting pathways
(under conditions stated above). Nonetheless, the power to detect
CE increases when the even/odd partition more closely aligns with
the causal partition; we demonstrate this in our simulations by
directly matching the two partitions (see Materials and Methods).
As expected, the EO test power increases from 95 to 100% when
we use this more precise SNP partition (Table 1).
Our above simulations used minor allele frequencies (MAFs)

drawn i.i.d. from a uniform (0.01,0.5) distribution. To assess a more
realistic MAF spectrum, we repeated our baseline simulations us-
ing MAFs drawn randomly from the MAF spectrum we observed
in UKBB, excluding rare variants with MAF < 0.01 for simplicity.
Nonetheless, the simulation results were nearly identical (SI Ap-
pendix, Table S1).
Finally, we assessed the EO test under third-order epistasis (SI

Appendix, Table S2). First, when interacting SNP triples were

distributed uniformly at random across the genome, as in the
isotropic model of pairwise epistasis, the EO test had positive
rate near 0.05. This is appropriately calibrated behavior in the
informal sense that there is no relationship between main effects
and epistasis effects and in the formal sense of the definition of
CE (Eq. 1, above). Second, we simulated a three-pathway model
where the product of all three pathways, but not any two, had an
effect on the phenotype. In this setting, the main and interaction
effects are related, but the formal CE definition is still 0. In the
simulation, we observe power near 8% at P < 0.05 significance.
This is expected in our simulations that use finite genomes; for
any simulated dataset, the pathways will have some nonzero
mean that induces pairwise interaction, resulting in an average γ
estimate that is zero but overdispersed (this is related to similar
issues in GREML with finite numbers of causal SNPs) (48).
Overall, the EO test is calibrated under isotropic third-order
epistasis and has some signal under higher-order coordinated
epistasis.

Testing for CE with the EO Test in the UKBB. We next tested for CE
with the EO test in the UKBB (49). We studied 21 quantitative and
5 binary traits (SI Appendix, Table S3) chosen to represent a range
of trait classes including anthropometric, disease, and blood traits.
We specifically analyzed the subjects classified as “White British”
and filtered out related individuals to minimize population struc-
ture bias while retaining large sample sizes (max n = 342,816). We
calculated PRS for each chromosome for each sample using a
standard thresholding approach (50) (see Materials and Methods).
The total PRS is then the sum of the individual chromosomes’
PRS. We evaluated a range of PRS P value thresholds and cor-
rected for this source of multiple testing using a Benjamini–
Hochberg false discovery rate (FDR) threshold of 10%. We used
10-fold cross-validation across individuals to minimize bias from in-
sample overfitting.
Unlike in perfectly infinitesimal models, in real data, the EO

test depends on the specific partition of chromosomes used to
estimate γ. To minimize bias from choosing a single split, for
example, even versus odd, in practice we jointly test interactions
across all distinct pairs of chromosome-specific PRS with an
F-test (see Materials and Methods). Following common practice
(51–56), we report the significant results per phenotype.

Table 1. Polygenic simulations under additivity, isotropic epistasis, or CE assuming random mating, population structure, or
assortative mating

Simulation characteristics θeo :   PRSe  ;  PRSo γeo :   Y  ;  PRSepPRSo

Population structure PC adjusted Assortative mating χ2 SDð Þ PR (α = 0.05) χ2 SDð Þ PR (α = 0.05)

Additive N N N 1.0 (1.4) 0.05 1.0 (1.4) 0.05
Y N N 81,789.4 (35,386.7) 0.99 101.1 (50.5) 0.95
Y Y N 1 (1.4) 0.05 1.0 (1.4) 0.05
N N Y 40.7 (13.0) 1.00 1.1 (1.6) 0.06

Isotropic epistasis N N N 1.0 (1.4) 0.05 1.0 (1.4) 0.05
Y N N 81,698.3 (35,422.0) 0.99 101.0 (51.1) 0.95
Y Y N 1.0 (1.4) 0.05 1.0 (1.4) 0.05
N N Y 40.6 (12.9) 1.00 1.2 (1.7) 0.08

CE N N N 1 (1.4) 0.05 15.4 (8.3) 0.96
Y N N 81,717.4 (35,394.7) 0.99 109.6 (57.1) 0.96
Y Y N 1.0 (1.4) 0.05 14.2 (8.2) 0.93
N N Y 40.8 (12.9) 1.00 43.4 (14.9) 1.00

Oracle EO partition N N N 1.0 (1.4) 0.05 132.6 (25.2) 1.00

Mean, standard deviation (SD), and positive rate (PR) at nominal P < 0.05 are shown for estimates of θeo and γeo. We display results averaged over 10,000
simulations using the baseline parameters n = 10,000, h2 = 0.5, and γ = 0.2. For all models, the ordinary EO test was performed by randomly assigning SNPs to
either the “Even” or “Odd” group, except in the “Oracle EO Partition” setting where SNPs were grouped according to the true, generative pathways they
causally effect.
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We discovered 18 traits with significant CE (Table 2), including
the complex diseases asthma, cardiovascular disease (CVD), ec-
zema, and T2D. We also detected CE for the complex quantitative
traits basal metabolic rate, bone mineral density (BMD), lung
function (forced expiratory volume [FEV]/ forced vital capacity
[FVC]), and height, as well as nine blood traits: glucose, low density
lipoprotein (LDL), platelet distribution width, mean platelet vol-
ume (MPV), red blood cell distribution width, sphered cell volume,
triglycerides (TG), and counts of monocytes, lymphocytes, and
platelets (PLAT). Taken together, these results show that CE
contributes to the genetic architecture of multiple complex traits.
To assess the potential for impact by population structure and

assortative mating, we calculate the correlation between each pair
of chromosome-specific PRS (θeo). In simulations, we found that
θeo > 0 indicates the presence of structured genotypes, which may
be due to assortative mating and/or uncorrected population
stratification. Although correction for PCs was sufficient for cali-
brated inference in simulations (Table 1), we nonetheless studied
the relationship between θeo and γeo as a metric for possible
confounding of the EO test by stratification. This caution is mo-
tivated by the complexities of population structure in massive
datasets like the UKBB (57–60). However, we found no evidence
that population stratification drove our CE inference; larger val-
ues of θ did not correlate with γ values or their corresponding P or
log(P) values (SI Appendix, Fig. S4). Overall, even with these
conservative extra tests we did not identify evidence that our EO
test for CE was substantially confounded by uncorrected structure
or assortative mating.

As a final assessment, we repeated our EO test for 100 ran-
dom permutations of the PRS among samples. The resulting
EO-test FDR was null, as expected (SI Appendix, Fig. S5). Fur-
thermore, we used these permutations to construct empirical P
values for the minimum EO test across all PRS thresholds as an
alternative to FDR correction. This gives qualitatively similar
results to our primary FDR-based analysis, although computa-
tional costs bound the minimum attainable empirical P values (SI
Appendix, Fig. S6). These analyses do not rule out the possibility
of subtle confounding, but they do provide further support for
the calibration of the EO test in practice.

Replicating EO Test Results with External PRS. Although we have
cross-validated our PRS, we wished to additionally check that
our results are not specific to a single population by overfitting
dataset-specific confounders (57, 58, 60). We investigated this by
constructing PRS using external summary statistics to remove the
potential impact of cohort-specific artifacts. We selected eight
traits that have large external GWAS summary statistics: asthma,
T2D, CVD, height, BMI, TG, educational attainment, and LDL;
additionally, we constructed PRS for nine other blood traits that
were only available for a specific P-value threshold (see Materials
and Methods and SI Appendix, Table S3). We tested replication
for the 10 traits in this list with internally significant CE.
We applied the EO test as described above and found that CE

replicated for LDL, PLAT, and MPV (Table 2). This validates
CE in the sense that our results are not specific to the main
effect–size estimates derived from the UKBB dataset. However,
significant CE did not replicate for several traits. Broadly, the
CE P values were less significant using external PRS, likely due
to a combination of winner’s curse and the fact that external
studies generally analyze datasets smaller than UKBB and do not
perfectly match UKBB in terms of environment and genetic
background.
To further strengthen confidence in CE, we performed an

alternate replication analysis by directly comparing the internal
and external PRS-interaction effect estimates across all pairs of
chromosomes (Fig. 2). This test identified highly significant CE
replication for 7/10 tested traits. This test is more powerful than
simply applying the EO test to the external PRS because it tests a
narrower alternative hypothesis. Specifically, the EO test asks
whether any chromosome pairs interact, whereas the direct
replication test asks whether the external interaction effect es-
timates correlate with their internal counterparts. Conceptually,
this is related to one- versus two-sided tests, as the former add
power when prior knowledge of the estimand’s sign is available.
In addition to strengthening confidence in the existence of CE,

these replication analyses also suggest that CE can be reliably
tested using internally constructed PRS in the future. This can be
essential for applications to under-studied traits, populations, or
environmental contexts (61–65).

Tissue-Specific Coordination in UKBB. Having demonstrated the ex-
istence of CE for several traits, we now consider the possibility
that interacting pathways are enriched in trait-relevant tissues.
Specifically, we test for tissue-specific enrichment of CE across the
above 26 traits and 13 tissue-specific genomic annotations: 7 based
on specifically expressed genes (adipocytes, blood cells, brain,
hippocampus, liver, muscles, and pancreas) (66, 67) and 6 based
on tissue-specific chromatin-marker patterns (adipose, brain,
hippocampus, liver, pancreas, and skeletal muscle) (68, 69) as used
in ref. 51.
For each tissue–trait pair, the tissue-specific EO test asks

whether the coordination mediated through a specific tissue
exceeds the genome-wide average. This test is conducted by first
creating a tissue-specific PRS for each chromosome (TPRSi) and
testing it for interaction with the standard PRS on other chro-
mosomes (PRSj, i≠ j). To focus our test on truly tissue-specific

Table 2. EO test results for 18 traits with significant CE in
the UKBB

Phenotype PRS type τ %VE FDR

Basal metabolic rate Intern quant 1.00E-08 0.74 0.02
BMD Intern quant 0.001 3.39 2.30E-03
FEV/FVC Intern quant 1.00E-07 0.52 0.02
Glucose Intern quant 1.00E-05 2.28 0.02
Height Intern quant 1.00E-08 2.80 4.00E-03
LDL Intern quant 1.00E-07 1.30 7.30E-04
Lymphocyte no. Intern quant 1.00E-05 1.05 2.00E-03
Monocyte no. Intern quant 1.00E-08 0.95 8.60E-04
PLAT no. Intern quant 0.0001 5.81 0.08
PLAT distribution width Intern quant 1.00E-08 3.99 2.60E-04
PLAT volume Intern quant 0.0001 9.06 2.90E-11
RBC distribution width Intern quant 1.00E-06 2.04 0.01
Sphered cell volume Intern quant 1.00E-06 1.73 0.07
Triglycerides Intern quant 0.0001 1.55 9.70E-03
Asthma Intern bin 0.0001 2.79 6.60E-04
Cardiovascular Intern bin 1.00E-08 3.90 6.50E-05
Eczema Intern bin 1.00E-08 2.18 8.10E-05
T2D Intern bin 0.001 3.64 9.40E-08
Corp. hemoglobin Extern quant — 19.17 0.04
LDL Extern quant 1.00E-05 2.19 0.01
PLAT no. Extern quant — 16.90 5.20E-03
PLAT volume Extern quant — 29.41 1.10E-25

Significant traits based on either internal or external PRS are shown
(FDR < 0.1); results for all traits are shown in SI Appendix, Table S3. We
summarize evidence for CE per trait using Benjamini–Hochberg FDR across
nine PRS P-value thresholds; for single-threshold external PRS, FDR is just an
ordinary P value. “Intern” indicates that the PRS was calculated using the
cross-validation method with UKBB data (Materials and Methods). “Extern”
indicates that the PRS was calculated using GWAS summary statistics from
external datasets (Materials and Methods). τ is the marginal SNP P-value
threshold used to construct the PRS and that minimizes the EO test P value.
%VE describes the variance explained by the chosen PRS across all samples.
quant, quantitative.
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effects, rather than global effects that happen to be tagged by
tissue-specific regions, we adjust for the ordinary chromosome-
level PRS interactions (PRSipPRSj) as well as the main effects of
each chromosome’s PRS and TPRS. We use a P = 0.05 threshold
with a conservative Bonferroni correction to account for the
multiple tested tissues. We only evaluate phenotypes with sig-
nificant ordinary CE (Table 2).
We found 53 instances of tissue-specific CE enrichment using

internal PRS (Table 3 and SI Appendix, Table S4). This includes
nine tissues enriched for LDL CE, several of which are essen-
tially positive controls: the liver is a key regulator of LDL me-
tabolism and adipocytes and muscles are primary sinks for the
triglycerides carried by LDL (70). Further confirming these re-
sults, adipocyte CE-enrichment replicates when using external
LDL PRS.
Another biologically plausible set of tissue–trait pairs is for

MPV, which also had the strongest ordinary CE of any trait.
First, we find significant enrichment for liver, consistent with its
known role as the main producer of the main regulator of PLAT
production, thrombopoietin (TPO) (71). Second, we find sig-
nificant CE enrichment for muscles, which also modestly pro-
duce TPO (71); furthermore, PLATs are important in healing
muscles. Third, we found suggestive CE with brain tissues—while
the underlying biology is less obvious, there is evidence that TPO
affects brain development (72). Additionally, recent comple-
mentary studies have found evidence that brain tissue plays a
role in MPV (73). All three of these tissues replicate for CE
enrichment when using external PRS.
We also found tissue-specific CE for complex disease. For

example, CVD has CE enrichment for brain, liver, muscle, and
adipose and has a clear link to CVD; several brain regions have
been implicated in the genetic basis of BMI, a CVD risk factor
(74, 75), and liver, muscle, and adipose all are deeply involved in
energy homeostasis (76). While none of these tissues replicate,
this likely reflects lack of power as even ordinary CE was not
significant in either of our external replication tests.
To add further confidence in tissue-specific CE, we tested five

permutations of the TPRS across samples. We observed that the
resulting P values were appropriately null (SI Appendix, Fig. S7).

In general, the tissue-specific EO test can improve power over
the ordinary EO test when the correct tissue is identified, despite
the fact that the TPRS almost necessarily explain less trait var-
iation than the overall PRS. This is consistent with our simula-
tion result where the EO test power increased under the Oracle
approach that partitions SNPs into the true pathways, even
though this yields PRS with weaker predictive power. For ex-
ample, the empirical EO test P value for sphered cell volume is
0.03 (SI Appendix, Table S3), but its P value for blood-cell CE is
0.003; however, the overall PRS explains 1.5% of trait variance
while the blood-cell TPRS explains only 0.5%. Similar properties
can be observed for many plausible tissue–trait pairs, for exam-
ple, in the liver-specific CE for glucose and triglycerides. This is
further evidence that CE is truly enriched in specific tissues for
some traits and illustrates that CE captures a genetic axis that is
partially distinct from additive variance.

Tissue-Pair CE in UKBB. We next ask whether CE can be detected
between pairs of tissues based on the hypothesis that pathways
may be tissue specific. Rather than test the interaction between
tissue-specific PRSi and global PRSj, we now test for interaction
between tissue 1–specific PRSi and tissue 2–specific PRSj. For
tissue-specific CE, we adjust for the same covariates as above
and now additionally adjust for PRSipTPRSj for both tested
TPRS and all i≠ j. In particular, these tissue–tissue interaction
tests are statistically independent of the EO tests and the tissue-
specific tests in the above sections under the null hypothesis for
tissue–tissue interaction.
If tissue–tissue CE exists, it will likely cause tissue-specific CE;

hence, to improve power, we only test tissue–trait pairs that are
significant in the above TPRS test (internal or external, Table 3).
This reduction in testing dimension is particularly important here
because the number of tests scales by the number of evaluated
tissues squared. As each phenotype now has a different number of
tests, and this test is the most complex and high dimensional we
consider, we use an aggressive Bonferroni correction and adjust
for all tested trait-tissue-tissue triples, performed separately for
internal and external PRS.
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Fig. 2. CE replication in UKBB. For each of the 10 phenotypes with internally significant CE and with available external PRS, we plot internal interaction
estimates (x-axis) against external estimates (y-axis) for each pair of chromosomes. Chromosomes that do not contribute to a particular PRS are excluded. We
use the PRS P-value threshold for each PRS to minimize its CE P value; this does not cause inflation because we are not testing the size of these interaction
estimates but rather their correlation. This indirect replication test is Bonferroni significant for 7/10 traits when correcting for the number of tested traits.
Effect sizes are displayed after each chromosome-specific PRS is centered and scaled, and the P values and red lines correspond to regressions with intercepts
constrained to 0.
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We find five Bonferroni-significant examples of tissue–tissue CE
(Table 4 and SI Appendix, Table S5). Two highlight the role of
muscles in PLAT, one interacting with adipocytes (internal is sig-
nificant; external P = 0.02), and another with hippocampus (external
is significant; internal P = 0.01); despite the nominal internal/exter-
nal replication, the biological interpretation of these tissue pairs is
unclear. Two other tissue pairs highlight brain interaction with blood
cells and liver for MPV; again, the role of the brain is not clear, but
both blood cells and liver have strong connection to MPV biology.
Finally, we find evidence for liver–pancreas CE driving FEV/FVC1,
which is particularly striking as the P value for this tissue–tissue CE
exceeds either P value for these tissues’ individual CE.

Discussion
Epistatic interactions between genetic variants can have profound
influences on phenotypic distributions and evolutionary land-
scapes (39). While there are numerous examples of epistasis in
model organisms and in-vitro studies (2, 7–11), especially between
pairs of genes, relatively few examples have been observed for
complex polygenic traits in humans. In this work, we propose a
specific form of epistasis called CE, in which many SNPs in one
pathway jointly skew the effects of SNPs in other pathways. This
model is inspired by recent theories of human genetic architecture
(29, 31). These pathways could represent distinct biological con-
cepts, including different tissues (e.g., neurons and astrocytes in

Table 3. Tissue-specific CE in the UKBB

Phenotype Tissue PRS type TPRS %VE P value

BMD Liver Intern quant 1.07 1.80E-03
FEV/FVC FrankelLiver Intern quant 0.28 1.30E-06
Glucose Franke.muscles Intern quant 0.07 2.40E-04
Height Franke.blood.cells Intern quant 0.03 4.00E-12
LDL Franke.blood.cells Intern quant 0.10 1.10E-04
LDL Franke.adipocytes Intern quant 1.77 2.60E-04
LDL Franke.brain Intern quant 1.10 6.60E-04
LDL Franke.hippocampus Intern quant 0.38 6.50E-06
LDL Franke.liver Intern quant 3.02 1.60E-03
LDL Franke.muscles Intern quant 0.26 1.30E-03
LDL Franke.pancreas Intern quant 1.95 2.00E-03
LDL Brain Intern quant 4.71 2.90E-04
LDL Hippocampus Intern quant 4.24 1.60E-05
Lymphocyte no. Franke.hippocampus Intern quant 0.90 2.10E-03
Monocyte no. Franke.hippocampus Intern quant 0.15 4.30E-04
PLAT no. Franke.adipocytes Intern quant 1.03 1.10E-03
PLAT no. Franke.hippocampus Intern quant 0.39 7.60E-05
PLAT no. Franke.muscles Intern quant 0.17 1.20E-03
PLAT no. Skeletal_muscle Intern quant 2.92 1.80E-03
PLAT distribution width Franke.brain Intern quant 0.04 5.30E-04
PLAT volume Franke.blood.cells Intern quant 0.36 1.80E-04
PLAT volume Franke.adipocytes Intern quant 1.83 9.60E-07
PLAT volume Franke.brain Intern quant 0.00 1.40E-09
PLAT volume Franke.hippocampus Intern quant 0.02 6.80E-13
PLAT volume Franke.liver Intern quant 1.27 1.30E-03
PLAT volume Franke.pancreas Intern quant 0.62 1.30E-04
PLAT volume Skeletal_muscle Intern quant 0.62 3.60E-03
Sphered cell volume Franke.blood.cells Intern quant 0.51 3.00E-03
Triglycerides Franke.pancreas Intern quant 0.49 6.60E-04
Cardiovascular Franke.brain Intern bin 0.01 8.20E-05
Cardiovascular Franke.liver Intern bin 0.24 1.00E-04
Cardiovascular Franke.muscles Intern bin 0.04 2.10E-04
Cardiovascular Adipose Intern bin 0.26 1.70E-03
Eczema Franke.muscles Intern bin 0.07 2.10E-04
LDL Franke.adipocytes Extern quant 0.44 2.30E-03
PLAT volume Franke.adipocytes Extern quant 0.08 1.60E-08
PLAT volume Franke.brain Extern quant 0.02 2.90E-03
PLAT volume Franke.muscles Extern quant 0.06 4.70E-05
PLAT volume Franke.pancreas Extern quant 0.00 7.40E-05
PLAT volume Adipose Extern quant 0.13 1.10E-03
PLAT volume Brain Extern quant 0.02 3.30E-03
PLAT volume Liver Extern quant 0.00 4.60E-04

Trait–tissue pairs with significant tissue-specific CE are shown; results for all tested trait–tissue pairs are in
SI Appendix, Table S4. For parsimony, we list here only the most significant tissue per trait as well as all significant
tissues for traits discussed in the main text. The prefix “Franke.” indicates that the tissue annotation is derived
from Franke laboratory (66, 67). TPRS %VE is percent phenotype variance explained by the tissue-specific PRS.
P values for the tissue-specific CE estimate are Bonferroni adjusted for testing across multiple tissue annotations.
“Intern” indicates that the PRS was calculated using the cross-validation method with UKBB data (Materials and
Methods). “Extern” indicates that the PRS was calculated using GWAS summary statistics from external datasets
(Materials and Methods).

Sheppard et al. PNAS | 7 of 11
A model and test for coordinated polygenic epistasis in complex traits https://doi.org/10.1073/pnas.1922305118

G
EN

ET
IC
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
29

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922305118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922305118/-/DCSupplemental
https://doi.org/10.1073/pnas.1922305118


Alzheimer’s disease) (77), different systems within a tissue [e.g.,
stress and immune response in amyotrophic lateral sclerosis (78)],
or unknown subtypes of a disease with partially distinct genetic
risk factors (29, 79). Importantly, CE is fundamentally different
from previous polygenic epistatic models; in particular, existing
models assume a purely uncoordinated form of epistasis.
We next developed a test, called the EO test for CE, based on

testing the interaction between PRS constructed from indepen-
dent chromosomes. We showed via extensive analytical examina-
tion and empirical simulation that our test will detect CE even
though the pathways are unknown. We further show that our test
is robust to (at least) moderate population structure and assor-
tative mating. The sign of γ determines which direction CE skews
the polygenic contribution, which is closely connected to the
probability of observing extreme phenotypes in either direction. In
the case where main SNP effects are positive, positive/negative
epistasis corresponds to synergy/antagonism between SNPs.
We observed evidence of CE from the EO test for many

phenotypes in the UKBB including blood, anthropometric, and
disease phenotypes. We interpret this as evidence that CE may
affect a range of phenotypes across many domains. To further
investigate CE, we examined PRS restricted to genomic regions
annotated to specific tissues and found biologically plausible
results. Interestingly, for several phenotypes, the tissue-specific
EO P value increased in significance despite the fact that the
total variance explained decreased. This suggests that tissue-
specific annotations are enriched for true latent pathways in a
trait-relevant way.
There are several limitations to the EO test and potential av-

enues for future improvements. First, more accurate PRS will
improve the power of the test, either through more sophisticated
models for PRS or through larger external reference datasets.
Second, the EO test uses a random split of SNPs into even and
odd PRS, which only partially tags the true latent pathways and in
turn reduces power. Using tissue-specific PRS is a step toward
identifying which genomic regions harbor the greatest CE.
Nonetheless, current variant-level annotations are imprecise, and
other annotations may be more relevant depending on researcher
interest and underlying trait biology. For example, annotations for
cell-type specificity, gene ontology, inferred coexpression net-
works, or other functional categories related to methylation and
chromatin state may be worth exploring. Third, the Bonferroni
correction we use is overly conservative due to the strong corre-
lation between splits (and tissues); some recent theoretical prog-
ress on testing multiple exchangeable hypotheses may enable
power gains in the future (80). Fourth, our random chromosome-
splitting procedure itself has noise, and jointly testing all 210 pairs
of chromosome-specific PRS interactions may add power; how-
ever, this is infeasible for modest data sets or for the extensions to
test annotation-specific CE enrichment. Fifth, as with any test of
intTeraction, phenotypic scale can impact results. However, we
show that the sign and existence of CE is preserved under
rescaling, either on average or under smooth transformation, and

hence CE is (approximately) “essential” (81). Sixth, we have not
yet directly connected CE estimates to their impact on genetic
architecture and heritability, though we do outline a path forward
in SI Appendix. Seventh, the possibility of subtle bias from pop-
ulation structure can never be fully ruled out; nonetheless, the EO
test was calibrated in simulations with population structure (Ta-
ble 1), we utilized standard population structure corrections, and
we performed several robustness checks that add confidence in
our CE inferences (SI Appendix, Figs. S4–S7). Eighth, the
chromosome-level partitions we use will yield conservative EO
estimates for CE when epistasis effects are enriched within chro-
mosome, as indicated by prior studies in model organisms (5, 82);
formally, this model violates the assumption of uniformly distrib-
uted epistasis that is sufficient for unbiased CE estimation (SI
Appendix, Proposition 1). Finally, the EO test only detects statis-
tical CE, not biological CE. For example, a disease that has two
subtypes with distinct, purely additive genetic bases will exhibit CE
even though neither subtype has any epistasis at all. On the other
side of the coin, though, CE can be a useful way to demonstrate
the existence of unmodeled subtypes.
Going forward, there are several straightforward applications

of CE that may inform novel dimensions of complex trait biol-
ogy. One could examine SNP×PRS interaction or gene–PRS
interaction as in TWAS (83, 84). This will add substantial power
when the main effect of a highly penetrant gene or SNP depends
heavily on genetic background. Second, expanding to other traits
and annotations could help refine the pathways involved and
increasingly home in on causal mechanisms. For example, an-
notation of SNPs based on association with environmental fac-
tors, such as diet, exercise, smoking, or stress, can inform the
nature of G×E interactions. Third, SNPs in genes known to in-
fluence specific pathways from in-vitro molecular assays could be
examined at the population scale in the full organismal context.
For example, the genes in the ribosomal quality-control (QC)
pathway are known to influence degradation of misfolded pro-
teins (19, 85), and this pathway may have important interactions
with disease- or trait-specific coding variants segregating in the
population. Fourth, we chose to develop CE and the EO test in
UKBB because we are motivated by recent theories on genetic
architectures of complex human traits, but we hope these ideas
will also be applied to model systems to move toward tests of
biological epistasis and to leverage prior knowledge. Finally, CE
may have implications for medical interventions, which are
generally pathway specific. For example, if asthma exhibits
strong positive CE between immune and lung pathways, inter-
vening on either pathway will be sufficient to reduce disease
burden; conversely, if LDL exhibits negative CE across liver- and
BMI-driven pathways, it may be important to simultaneously
address both pathways in order to control blood cholesterol.

Materials and Methods
Simulation Description. Phenotypes and genotypes were generated under
three phenotypic models—additive, isotropic (uncoordinated) epistasis, and

Table 4. Tissue-Pair CE in the UKBB

Phenotype Tissue 1 Tissue 2 PRS type P value

FEV/FVC Franke.liver Franke.pancreas Intern quant 2.20E-05
PLAT no. Franke.adipocytes Franke.muscles Intern quant 1.50E-04
PLAT volume Franke.blood.cells Franke.brain Intern quant 1.80E-05
PLAT volume Franke.hippocampus Franke.liver Intern quant 2.30E-04
PLAT no. Franke.hippocampus Franke.muscles Extern quant 2.00E-04

Trait-tissue-tissue triples with significant tissue–tissue CE are shown; results for all tested triples are shown in
SI Appendix, Table S5. We use a P = 0.05 significance threshold after Bonferroni adjustment for the total number
of tested trait-tissue-tissue triples. The prefix “Franke.” indicates that the tissue annotation is derived from
Franke laboratory (66, 67).
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CE—and three genotypic models—independent samples, assortative mating,
and two populations with FST = 0.1 (SI Appendix, section 6). In brief, the
additive model had no epistasis. The isotropic model had epistasis herita-
bility of 10%, contributed by 0.1% of SNP pairs having interaction effects
drawn independently of the main effects. The CE model had two additive
pathways that interact to explain 10% of the phenotypic variation, where
each pathway is driven by a different subset of causal SNPs. The genotypes
were either drawn i.i.d. over samples, or were drawn after one generation
of assortative mating, or were drawn from a Balding–Nichols model (86).

For each simulation, genotypes were generated for 10,000 individuals at
1,000 SNPs. Half of the individuals were randomly selected for the training
set, in which the phenotype ywas regressed on each genotype gj to calculate

the estimated effect, β̂j, of each SNP. We then constructed PRS in the

remaining individuals PRS = ∑1000
j=1

gj β̂j( ). PRS were also calculated separately

for “Even” and “Odd” SNPs, sets that were defined arbitrarily as there are
no chromosomes in these simulations.

We then tested for EO correlation by regressing odd PRS on the even PRS
and tested CE by regressing the phenotype on the interaction between the
odd PRS and the even PRS, which is the EO test. The test was also performed
conditionally on the first genetic PC in the case where population structure is
simulated. Finally, we evaluated the EO test when the “Even” and “Odd” SNP
sets were chosen to perfectly coincide with SNPs corresponding to the causal
pathways one and two, respectively, which uses oracle information that is
not known in practice.

A full description of the simulations is provided in SI Appendix, section 6, and all
code used is provided at https://github.com/nadavrap/CoordinatedInteractions.

UKBB Data Description. Datawere obtained from theUKBB project (49).Weused
imputed genomic data version 3. We used the same phenotypic transformations
as defined in ref. 51. Education-level categories (data field no. 6138) were
transformed to numerical values according to ref. 87 as follows: “College or
University degree” = 20 y; “Advanced level/Advanced Subsidiary level (A levels/
AS levels) or equivalent” = 13 y; “Ordinary level/General Certificate of Secondary
Education (O levels/GCSEs) or equivalent” = 10 y; “Certificate of Secondary Ed-
ucation (CSEs) or equivalent” = 10 y; “National Vocational Qualification (NVQ) or
Higher National Diploma (HND) or Higher National Certificate (HNC) or equiva-
lent” = 19 y; “Other professional qualifications, e.g., nursing or teaching” = 15 y;
“None of the above” = 7 y; “Prefer not to answer” = missing. BMI was used as
computed by UKBB (data field no. 21001). Heel BMD T-score was computed as
the sum of the left and right heel BMD T-score (data fields no. 4106 and 4125).
Waist–hip ratio was computed as the ratio of waist circumference and hip cir-
cumference (data fields no. 48 and 49). FEV1–FVC ratio phenotype was com-
puted as the ratio between data field FVC (no. 3062) and “FEV in 1 second”
(FEV1) (no. 3063). T2D phenotype was based on data field “Diabetes diagnosed
by doctor” (no. 2443) where values such as “Prefer not to answer” and “Do not
know” were considered as missing data. Eczema allergy was based on data field
“Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy di-
agnosed by doctor” (no. 6152) where the value “Hay fever, allergic rhinitis, or
eczema” was considered to define cases, “Prefer not to answer” as missing, and
the rest as controls. Asthma was based on the same data field, where only
“Asthma” values were considered as cases. High cholesterol was determined based
on samples with data code 1,473 (“high cholesterol”) in field “Noncancer illness
code, self-reported” (no. 20002), all other samples were defined as controls. Car-
diovascular cases were defined according to ref. 88 as samples having any of the
following codes in field “Noncancer illness code, self-reported” (no. 20002): 1,065
(hypertension); 1,066 (heart/cardiac problem); 1,067 (peripheral vascular disease);
1,068 (venous thromboembolic disease); 1,081 (stroke); 1,082 (transient ischemic
attack [tia]); 1,083 (subdural hemorrhage/hematoma); 1,425 (cerebral aneurysm);
1,473 (high cholesterol); and 1,493 (other venous/lymphatic disease).

Sample Selection. For sample QC, we filtered out samples who were not classified
as “white British” (data field 21,000), or with discordance of genetic sex with
declared sex (data fields 22,001 and 31). We filtered out 74,634 samples due to
relatedness based on the .dat file provided by the UKBB. Using a greedy ap-
proach, samples were removed by number of remaining related samples from
largest to lowest until no more related samples were left. In total, 342,815
subjects (158,561 males and 184,254 females) were included in further analysis.

For genotype QC, we filtered out variants with MAF lower than 0.1%. In
total, 16,427,045 variants were included. These analyses were performed in
plink version 2.00a (89).

Internal PRS.
Cross-validation by phenotype. For each phenotype, we split subjects into 10
folds. For each fold, we estimated effect size of each variant using the
remaining nine folds, and we then use these effect sizes to construct a PRS for
the held-out fold. Quantitative phenotypes were normalized by first removing
outliers defined as samples outside 1.5 times the interquartile range above the
upper quartile or below the lower quartile and then performing quantile
normalization. Although such normalization will inevitably shrink the non-
Gaussianity induced by true CE signal, we view this as an important normali-
zation step to remain conservative. Moreover, we prove smooth monotone
transforms cannot create, remove, or change the sign of CE in SI Appendix.

PRS estimation consisted of two steps: 1) effect size estimation; 2) compute
PRS using selected variants. The first step is equivalent to performing a
standard GWAS. For that purpose, we add as covariates the sex, age, center of
assessment, genotyping batch, first 40 PCs as provided by UKBB, and BMI
(except when BMIwas the target phenotype). Effect sizes were estimated and
tested with linear regression for quantitative traits. For binary traits, we used
logistic regression and a computationally efficient approximate Firth cor-
rection (90, 91) using “cc-residualize no-firth” in plink2. In the second step,
PRS were computed for each fold for the 10% of samples that were not used
to estimate the effect sizes. We computed PRS using a range of 9 P-value
thresholds: 1.0, 0.1, 0.01, 0.001, 0.0001, 1e-05, 1e-06, 1e-07, and 1e-08.

External PRS. An alternative approach is to use effect sizes estimated from
external datasets. This must be a cohort with similar ancestry in which the UKBB
subjects were not included. We used external summary statistics included in LD
Hub (92) from the following studies: height [GIANT consortium (93)]; LDL and
triglycerides [Global Lipids Genetics Consortium (94)]; BMI [GIANT consortium
(95)]; educational attainment [Social Science Genetic Association Consortium
(87)]; T2D [DIAGRAM Consortium (96)]; Asthma [A GABRIEL Consortium (97)];
and CVD [CARDIoGRAMplusC4D Consortium (98)]. For nine additional pheno-
types, summary statistics were available for only a single P-value threshold and
downloaded from the Polygenic Score Catalog (99): eosinophil counts, reticu-
locyte counts, PLAT counts, lymphocyte counts, red cell counts, mean corpus-
cular hemoglobin, white cell counts, PLAT volume, and monocyte counts (100).

Tissue-Specific Variants. Variants based on tissue-specific gene expression
were defined as variants that fall within a 100 kb of the genes that were
classified as differentially expressed genes by refs. 66 and 67, similarly to ref.
51. Variants were based on chromatin markers from the Roadmap project
(68, 69). Any genomic location annotated with any of the DNase, H3K27ac,
H3K36me3, H3K4me1, H3K4me3, and H3K9ac was considered as “open
chromatin” region. To evaluate PRS based on tissue-specific variants, we
used variants in the intersection of imputed variants from UKBB with MAF >
0.01% and variants that were classified as tissue specific. We did not use the
clumped set of variants, as the intersection of the two is small.

Data Availability. The code to generate internal and external PRS, to perform
EO CE and tissue-specific tests, and to reproduce simulations can be found at
https://github.com/nadavrap/CoordinatedInteractions. R Markdown note-
book to interactively explore CE and the EO test in a range of simulation
settings can be found at https://github.com/nadavrap/CoordinatedInteractions/
tree/master/simulations. UKBB data are available through the UK Biobank
Access Management System. Detailed instructions can be found at https://
www.ukbiobank.ac.uk/register-apply/.
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